## Oxygen Optodes 3835/4130/4175



Since oxygen is involved in most of the biological and chemical processes in aquatic environments, it is the single most important parameter needing to be measured. Oxygen can also be used as a tracer in oceanographic studies.
For environmental reasons it is critical to monitor oxygen in areas where the supply of oxygen is limited compared to demand e.g.:

- In shallow coastal areas with significant algae blooms
- In Fjords or other areas with limited exchange of water
- Around fish farms
- In areas interesting for dumping of mine or dredging waste

The Aanderaa Oxygen Optodes are based on the ability of selected substances to act as dynamic fluorescence quenchers. The fluorescent indicator is a special platinum porphyrin complex embedded in a gas permeable foil that is exposed to the surrounding water. Ablack optical isolation coating protects the complex from sunlight and fluorescent particles in the water.

This sensing foil is attached to a window providing optical

OXYGEN OPTODE 3835
OXYGEN OPTODE/TEMPERTURE SENSOR 4130 OXYGEN OPTODE 4175

## - Optical measurement principle

- Long time stability
- More than one year without recalibration
- Low maintenance
- User friendly
- Optical measurement principle
- Use with AADI Current Meters
- Use as stand alone sensor
- Output format: SR10, RS232, Analog output (refer specifications)
access for the measuring system from inside a watertight titanium housing.

The foil is excited by modulated blue light, and the phase of a returned red light is measured (see illustration overleaf). By linearizing and temperature compensating, with an incorporated temperature sensor, the absolute $\mathrm{O}_{2}$ concentration can be determined.

The lifetime-based luminescence quenching principle offers the following advantages over electro-chemical sensors:

- Not stirring sensitive (it consumes no oxygen)
- Less affected by fouling
- Measures absolute oxygen concentrations without repeated calibrations
- Better long-term stability
- Less affected by pressure
- Pressure behaviour is predictable
- Faster response time.

The sensor is designed to operate down to 300 meters. It fits directly on to the top end-plate of Recording Current Meter RCM 9, and other Aanderaa instruments.

## Specifications

| PARAMETER | OXYGEN OPTODE 3835 |  | OXYGEN/TEMPERATURE OPTODE 4130 |  | OXYGEN OPTODE 4175 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OXYGEN | $\mathrm{O}_{2}$-Concentration | Air Saturation | $\mathrm{O}_{2}$-Concentration | Air Saturation | $\mathrm{O}_{2}$-Concentration | Air Saturation |
| Measuring Range: | 0-500 $\mathrm{M}^{1}$ ) | 0-120\% ${ }^{2}$ ) | 0-500 $\mathrm{M}^{1}$ ) | 0-120\% ${ }^{2}$ ) | 0-500 $\mathrm{M}^{1}$ ) | 0-120\% ${ }^{3}$ ) |
| Resolution: | $<1 \mu \mathrm{M}$ | 0.4\% | $<1 \mu \mathrm{M}$ | 0.4\% | $<1 \mu \mathrm{M}$ | 0.4\% |
| Accuracy: | $<8 \mu \mathrm{M}$ or $5 \%^{4)}$ <br> whichever is greater | $<5 \%{ }^{4}$ | $<8 \mu \mathrm{M}$ or $5 \%^{4)}$ whichever is greater | < $5 \%{ }^{4}$ | $<8 \mu \mathrm{M}$ or $5 \%{ }^{4}$ whichever is greater | < $5 \%{ }^{4}$ |
| Settling Time (63\%): | <25s |  | <25s |  | <25s |  |
| TEMPERATURE |  |  |  |  |  |  |
| Range: | $-0^{\circ} \mathrm{C}$ to $+36^{\circ} \mathrm{C}$ |  | $-7.5^{\circ} \mathrm{C}$ to $+41^{\circ} \mathrm{C}$ |  | $-0^{\circ} \mathrm{C}$ to $+36^{\circ} \mathrm{C}$ |  |
| Resolution: | $0.01{ }^{\circ} \mathrm{C}$ |  | $0.05^{\circ} \mathrm{C}$ |  | $0.01^{\circ} \mathrm{C}(0-5 \mathrm{~V})$ | $0.02{ }^{\circ} \mathrm{C}(4-20 \mathrm{~mA})$ |
| Accuracy: | $\pm 0.05^{\circ} \mathrm{C}$ |  | $\pm 0.1^{\circ} \mathrm{C}$ |  | $\pm 0.1^{\circ} \mathrm{C}(0-5 \mathrm{~V})$ | $\pm 0.15^{\circ} \mathrm{C}(4-20 \mathrm{~mA})$ |
| Settling Time (63\%): | <10s |  | 30s |  | <10s |  |
| Operating Temperature | 0-40 ${ }^{\circ} \mathrm{C}\left(32-104{ }^{\circ} \mathrm{F}\right)$ |  | 0-40 ${ }^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$ |  | 0-40 ${ }^{\circ} \mathrm{C}\left(32-104{ }^{\circ} \mathrm{F}\right)$ |  |
| Operating Depth: | 0-300m (984.3ft) |  | 0-300m (984.3ft) |  | 0-300m (984.3ft) |  |
| Sampling Rate: | SR10: controlled by the datalogger. RS-232: From 1s to 255 minutes |  | Controlled by the datalogger |  | From 1s to 255 minutes |  |
| Output Formats: | Aanderaa SR10 ${ }^{5}$ (Only Oxygen) RS-232 ${ }^{6}$ |  | Aanderaa SR10 ${ }^{5}$ (Oxygen) and VR22 ${ }^{5)}$ (Temperature) |  | $\begin{aligned} & 0-5 \mathrm{~V} \text { outputs: } \pm 0.1 \% \text { of } \mathrm{FS}^{7} \\ & 4-20 \mathrm{~mA} \text { output: } \pm 0.2 \% \text { of } \mathrm{FS}^{7} \\ & \mathrm{RS}-232^{6)} \end{aligned}$ |  |
| Current Consumption: | SR10: $10 \mathrm{~mA} / \mathrm{T}$ where T is recording interval in minutes RS-232: $80 \mathrm{~mA} / \mathrm{S}+0.3 \mathrm{~mA}$ where S is recording interval in seconds |  | $10 \mathrm{~mA} / \mathrm{T}$ where T is recording interval in minutes |  | $80 \mathrm{~mA} / \mathrm{S}+0.3 \mathrm{~mA}+$ Ia where S is recording interval in seconds and Ia is quiescent: 5-45mA when analog adaptor enabled |  |
| Supply Voltage: | $\begin{aligned} & \text { SR10: }-6 \text { to }-14 \mathrm{Vdc} \\ & \text { RS- } 232:+5 \text { to }+14 \mathrm{Vdc} \end{aligned}$ |  | SR10: -6 to -14Vdc |  | Analogue: +7 to +14 Vdc RS-232: +5 to +14 Vdc |  |
| Dimensions: | Ø36 x 86mm ( $\varnothing 1.42 \times 3.386 \mathrm{in}$ ) |  | $\emptyset 40 \times 168 \mathrm{~mm}$ (OD1.575 $\times 6.61 \mathrm{in}$ ) |  | Ø40 $\times 175.5 \mathrm{~mm}$ ( $\varnothing 1.42 \times 6.9 \mathrm{in}$ ) |  |
| Weight: | 120g (4.23oz) |  | 385 g (13.580z) |  | 370 g (13.05oz) |  |
| Materials: | Titanium, Hostaform (POM) |  | Titanium, Hostaform (POM) |  | Titanium, Hostaform (POM) |  |
| Accessories included: | Sensor Cable 3854 |  |  |  |  |  |
| Accessories not included: | Sensor Cable 3855 to PC ${ }^{88}$ Foil Service Kit 3853 PSt ${ }^{5}$ |  | Sensor Cable 3855 to PC ${ }^{8)}$ Foil Service Kit 3853 PSt ${ }^{5}$ ) |  | Sensor Cable 3855 to $\mathrm{PC}^{8)}$ Foil Service Kit 3853 PSt ${ }^{5}$ Cable 3485 with free end |  |
| Warranty: | Two years against faulty material and workmanship (4130, 3835, 4175) |  |  |  |  |  |

1) $\mathrm{O}_{2}$ Concentration in $\mathrm{mM}=\mathrm{mmol} / \mathrm{l}$. To obtain $\mathrm{mg} / \mathrm{l}$, divide by 31.25
${ }^{2)}$ The saturation range covered by SR10 is $0-150 \%$, the temperature range covered by SR10 is -5C to 40C
2) The saturation range covered by analogue $0-5 \mathrm{~V}$ and $4-20 \mathrm{~mA}$ is $0-150 \%$, the temperature range covered is -5 C to 40 C
3) Aanderaa SR10a/VR22 are signal protocols that are used with Aanderaa equipment only
4) Valid for salinity 33-37ppt

| 3835 | 4130 | 4175 | When used with Cable 3485 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Plug | Colour |
| 1: Positive Supply ${ }^{\text {A }}$, ${ }^{\text {B) }}$ | 1: System Ground | 1: Positive Supply | 8 | Green |
| 2: Ground ${ }^{\text {c }}$ | 2: Not Connected | 2: Ground | 7 | Black |
| 3: $-9 \mathrm{~V}^{\text {D }}$ | 3: -9V | 3: Analogue Output 1 | 6 | White |
| 4: Reserved, Do Not Connect | 4: Not Connected | 4: Return Ground 1 | 5 | Blue |
| 5: Bridge Voltage (BV) | 5: Bridge Voltage (BV) | 5: Analogue Output 2 | 4 | Violet |
| 6: Reserved, Do Not Connect | 6: SR10 (Oxygen) | 6: Return Ground 2 | 3 | Yellow |
| 7: RXD (RS-232) | 7: Not Connected | 7: RXD (RS232) | 2 | Brown |
| 8: TXD (RS-232) | 8: Bridge Ground | 8: TXD (RS232) | 1 | Grey |
| 9: Control Voltage | 9: Control Voltage | 9: Not Connected | 10 | Red |
| 10: SR10 (Oxygen) | 10: VR22 (Temperature) | 10: Not Connected | 9 | Orange |

AANDERAA DATA INSTRUMENTS

## Applications

| Optode Model | 3835 | 4130 | 4175 |
| :---: | :---: | :---: | :---: |
| Description | Integrally/Direct Mounted | Immersion Body for cable or sensor string | Immersion Body with Analog and Serial Outputs |
| Output | Dual Channel: RS-232 data string (Oxygen,Temp.) or Single SR10 (Oxygen) channel to RCMs or RDCPs | Dual Channel: SR10 (Oxygen) and VR22 (Temp.) | Dual Channel: <br> 0-5V (Oxygen, Temp.) or 4-20mA <br> (Oxygen, Temp.) and/or RS-232 <br> (Oxygen, Temp) |
| Application | Add sensor(s) to Top End-plate of our RCM 9, RDCP 600 or for OEM/Third party use | For use with Aanderaa DL series dataloggers; added sensors to Weather Stations AWS 2700, Data Buoys DB 4280 or our self-contained recording instruments | General Purpose use with third party dataloggers, e.g. CTDs, ARGO floats, ROVs; PLCs, process industry controllers, recorders, data acquisition and control systems. |
| Sample Rate | Set by host. <br> RCM: continuously* - 120 minute RDCP: 1minute - 8 hours. Internal interval setting for input to third party RS-232 interface. | Set by host. <br> DL 3960: continuously* - 180 minutes <br> DL 7: 1 minute - 180 minutes <br> DB 4280: continuously* - 180 minutes <br> AWS 2700: continuously* - 180 minutes |  |
| Multi-sensor Configuration | RCM 9: Yes, 2nd 3830/3835 via Cable 3296 and Receptacle 3622R. RDCP 600: 300m version: as for RCM 9 | DL 3960: Max 15 sensors, depending on the configuration <br> DL 7: Max 5 sensors <br> DB 4280: Max 15 sensors, depending on the configuration <br> Sensor attachment: single points on cable use 3913; In-line 5-Sensor Disk 3829 <br> RCM/RDCP: contact factory. |  |
| Stand-alone <br> Sensor (0-300m) | Use Cable 3485. Output: RS-232 <br> (Oxygen,Temp.). <br> Sampling Rate: 1 Hz to 255 minutes |  | User furnished datalogger or controller, Cable 3485 <br> Output: 0-5Vdc; 4-20mA, dc; or RS-232 (Oxygen, Temperature) Sampling Rate: 1 Hz to 255 min . |

*) Note that when the Optode is connected to an instrument like the RCM, CMB, AWS or a datalogger, the sampling rate in a continuous recording mode depends on the number of channels for storage etc.

## Oxyview Program

Oxyview®, has been designed for use with Oxygen Optode/ Temperature Sensor 3830/3835. The program allows display of Oxygen Concentration, Oxygen Saturation and Temperature both in tables and graphical forms.

A Calibration Wizard is included in the program. This Wizard helps calibrate the Optode.

Oxyview® can also be used to configuring the Oxygen Optode.

## The Optical System

The principle of measurement is based on the effect of dynamic luminescence quenching (lifetime based) by molecular oxygen.



Cable 3296. Connecting cable 10 pin to 6 pin


Cable 3485. Connecting cable 10 pin to free end

## EXAMPLES OF APPLICATIONS

To the right:The Oxygen Optode 3835 used with a Recording Current Meter to measure dissolved oxygen and temperature as part of environmental monitoring.

Below:
The Oxygen/Temperature Sensor 4130 used with Display Unit 3315 to measure dissolved oxygen and temperature in a fish mare


Post Box 34 SLÅTtHAUG


Cable 3854. Connecting cable 10 pin to Cell Plug


Cable 3855. Connecting cable for PC


Representative's Stamp

5851 BERGEN, NORWAY
Tel. +4755604800
Fel. +4755604801

[^0]
[^0]:    N. and S. America Tel. +15082269300

    Spain Tel. +34962866709
    e-mail: info@aadi.no - http://www.aadi.no

