Cascadia CarbonSAFE Team

Lamont-Doherty Earth Observatory
COLUMBIA UNIVERSITY | EARTH INSTITUTE

Work in this project is supported by the **U.S. Department of Energy** under CarbonSAFE Award DE-FE0029219

Objective:

Integrated pre-feasibility study to characterize an ocean basalt reservoir for safe and permanent storage of 50 MMT of CO₂ in the Cascadia Basin, offshore Washington State and British Columbia

CarbonSAFE Project Goals

Goal 1: Technical assessment of offshore basalt reservoirs for safe and permanent CO₂ storage (e.g., reservoir characterization, CO₂ sourcing, transport, and monitoring at offshore site)

Goal 2: Non-technical assessment of offshore CO₂ storage site (e.g., regulatory framework, stakeholder engagement, risk assessment, financial needs and long-termliability)

CarbonSAFE Project Goals

Goal 1: Technical assessment of offshore basalt reservoirs for safe and permanent CO₂ storage (e.g., reservoir characterization, CO₂ sourcing, transport, and monitoring at offshore site)

Goal 2: Non-technical assessment of offshore CO₂ storage site (e.g., regulatory framework, stakeholder engagement, risk assessment, financial needs and long-termliability)

Carbon Capture and Storage (CCS)

Global CO₂ Capture

By the numbers

Global CCS Institute:

- 37 million tonnes of CO₂ per year captured from 21 largescale projects
- Plans for additional 30 million tonnes of CO₂ per year

- Global emissions 32 billion tonnes per year
- International Energy Agency estimates that 4 billion tonnes of CO₂ needs to be sequestered annually by 2040 in order to meet the Paris agreement limit, and 11.2 billion tonnes of CO₂ per year by 2060

CCS in Canada

By the numbers

- Alberta Carbon Trunk Line: 2 million tonnes per year (Mtpa) of CO₂ (up to 14.6 Mtpa)
- Quest Canada (Shell): 1 Mtpa of CO₂
- Great Plains Synfuels Plant and Weyburn-Midale 3 Mtpa of CO₂
- Boundary Dam Carbon Capture and Storage 1 Mtpa of CO₂

- Most for Enhanced Oil Recover (EOR)
- Some as fertilizer
- Some for geological storage

CCS in Canada

Air Capture

- For Utilization (CCU)
- Carbon Engineering facility in Squamish, BC
- Plan to capture 1-2 million tonnes of Atmospheric Air CO₂ per year
- Turn into liquid fuel
- Similar to Climeworks (Zurich, Switzerland) which is for fertilization
- Costs currently US\$500-600 per tonne of CO₂; upscaling can ring down costs to US\$ 100-200 (compared to US\$50 per tonne of CO₂ from power plants)

CCS in Rock

Sleipner (Norway) by Stratoil

- Sequestration in North Sea sandstone
- 1 million tonnes of CO₂ annually, 17 million tonnes since 1996
- · Long-term monitoring in place
- Will take over millennia for the CO₂ to react with rock to mineralize and be permanently locked

Sleipner A

CO₂ storage security and permanence in basalt

prevailing view in 2005

CO₂ injected into water reservoirs below the surface may be stored through structural, residual solubility and mineral trapping

current view in 2016

In situ mineralization via CO₂-fluid-basalt reactions occurs quickly (a few years)

Snæbjörnsdóttr et al., IJGGC, 2017

Water 99.6 % Geothermal gases 0.4 % Carbon dioxide

CO₂ storage security and permanence in basalt

CarbFIX by the numbers

Phase 1 (2007-2017):

- 250 tonnes CO₂ from 2012
- 25 tonnes of water per tonne of CO₂
- 95% solidified in 2 years

CarbFIX 2: (2017-)

- Air capture
- 50 tonnes of CO₂

Wallula, WA Basalt Pilot Project

Visual light imagery

- Injected 1000 tons CO₂ (liquid) into permeable, layered basalt flow tops
- After 2 years, isotopic analysis of sidewall cores chemically distinguishes post-injection ankerite nodules from ambient carbonate
- Progressive enrichment in Fe & Mn over time indicates mineralization of host basalt, not re-precipitated calcite

McGrail et al., ES&TL, 2016

Upscaling questions: in situ mineral carbonation in basalt

- Do other adequate basalt reservoir sites exist?
- What are anticipated in situ reaction rates? Will scCO₂ injection rapidly precipitate carbonates, other minerals?
- What is best injection strategy for CO₂ with seawater for large volumes? To optimize mineralization?
- What large potential industrial sources of CO₂ could be delivered to the site?
- What are best monitoring and volume assessment methods?

CO₂ storage in the Cascadia Basin

CO₂injected below sediments may be stored through physical, solubility, and mineral trapping mechanisms-

CarbFIX and Wallula projects show mineralization occurs quickly (a few years)

Existing physical data in Cascadia Basin

-Active cabled network (NEPTUNE) for

observation and monitoring

public archives

Potential CO₂ sources near Cascadia area

(from proposal)

Case #2 - Power Plants plus Mix

Sources:

- Power Plants: 2.5 Mtpa
 - Centralia Power Plant, 1 Mtpa
 - Port Westward Power Plant,
 1.1 Mtpa
- Other: 0.52 Mtpa

Transport:

Rail, Ship and/or Pipeline

Case #3 – North Washington Coastal Mix

Sources:

- Shell Puget Sound Refinery, 1.9
 Mtpa
- Alcoa Intalco Work Aluminium Plant, 0.4 Mtpa

Transport:

 Ship and/or Pipeline 380 miles to Cascadia Basin

Case #4 – Largest BC fossil fuel CO2 Emitters

Sources:

- Main Sources: 1.551 MMT/yr ▼
 - Richmond Cement Plant, 0.797 MMT/yr
 - Delta Plant, 0.754 MMT/yr

Transport:

 Ship or Offshore Pipeline: 300 miles from Richmond and Delta Plants to Cascadia Basin ONC Node

Transport:

- Pipeline for main sources:
 - Land (new route along Highway): 80 miles to Port Renfrew
 - Offshore: 160 miles from Port Renfrew to Cascadia Basin ONC Node
- Ship from Harmac via Crofton to Cascadia Basin ONC Node: 290 miles

Case #5 – Carbon-negative scenario: Largest BC CO₂
Emitters incl. Biomass, plus Air Capture

- Sources:
- Main Sources: 2.9 MMT/yr
 - Crofton Division, 1.6 MMT/yr
 - Harmac Pacific Operations, 1.3 MMT/yr
- Maybe add: 2.2 MMT/yr
 - Howe Sound Pulp and Paper Mill, 1.5 MMT/yr
 - Powell River Division, 0.7 MMT/yr
 - Carbon Engineering,
 1-2 MMT/yr, CO₂ Air
 Capture

Phase I accomplishments to date

- Developed contact list and approached potential industrysourced CO₂ streams in the region
- Began laboratory analysis and injection modeling studies to optimize mineralization in basalt
- Compiled inventory of existing petrophysical, hydrological, and regional data in vicinity of the offshore reservoir
- Reviewed framework for offshore storage regulations in US and Canada and engaged regulators (April 2018 Workshop)
- Constructed risk registry for project-related risks and related NRAP modeling
- Compiled list for common and other potential environmental monitoring parameters

Natural Seismicity: Juan de Fuca tectonic plate

Lessons Learned to date

- Large potential sources of anthropogenic CO₂ exist in the region
- Existing regulations appear to restrict offshore CO_2 disposal across national boundaries (e.g., Canada to U.S.)
- Compiled hydrological data indicate basalt injectivity is high but likely anisotropic
- Laboratory studies of CO₂—basalt—water mixtures indicate large variability in reaction rates
- Real-time injection monitoring is feasible using NEPTUNE

Phase I plans

- Extend laboratory analysis for reactivity rates in ocean basalt
- Refine injection and reservoir modeling to optimize mineralization
- Establish industrial source for CO₂ stream(s) and transport options
- Define regulatory permitting process(es) and public outreach plan
- Maintain risk registry and develop risk mitigation plan

WASHINGTON

OREGON

Phase II-IV plans

- Next Phase II proposal submitted in February 2018, on Storage Complex Feasibility (for 2 years)
 - Lab and Field Studies (incl. 2D/3D seismics over target area) and modelling, regulatory engagement and public outreach
- Phase III: Site Characterization needed to meet storage permit requirements, and address rights of way (2 years)
- Phase IV: Permitting and Construction (3.5 years)

OCEAN NETWORKS CANADA

THANK YOU!

Ocean Networks Canada is funded by the Canada Foundation for Innovation, Government of Canada, University of Victoria, Government of British Columbia, CANARIE, and IBM Canada.

