WORLD-LEADING DISCOVERIES AT A CRITICAL TIME

OCEAN NETWORKS CANADA

How can Ocean Networks Canada support longterm monitoring of deep-sea <u>meroplankton</u> communities in the NE Pacific?

Fabio De Leo

Senior Staff Scientist, Ocean Networks Canada Adjunct Assistant Professor, Department of Biology

ONC Observatory Council Meeting January 15, 2020

Workshop: "Advances in ocean biological observations – sustained system for deep-ocean <u>meroplankton</u>"

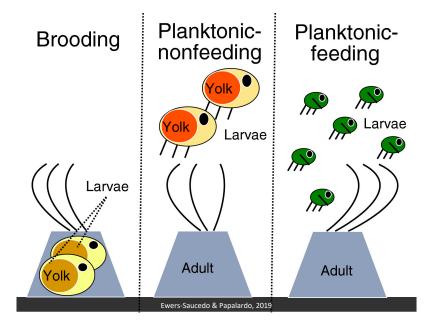
Aveiro, Portugal, May 27-29 2019

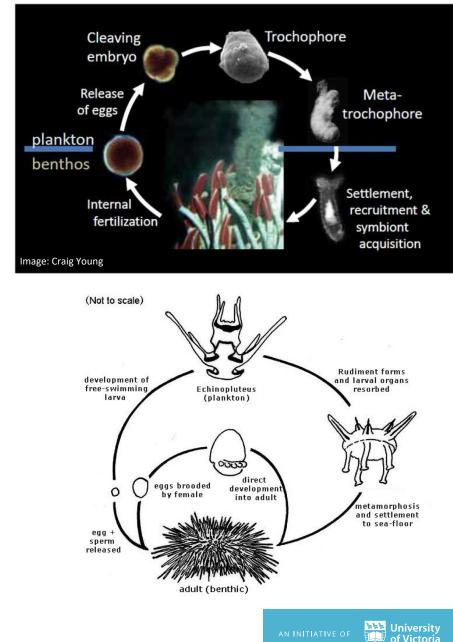
Participant Institutions:

Ocean Networks Canada Dalhousie University (Canada) Woods Hole Inst. Oceanography (USA) Monterey Bay Aquarium Research Institute (USA) Western Washington University (USA) University of Oregon (USA) Brest University (France) National Oceanography Centre (UK) Japanese Marine Technology Institute (Japan) Okinawa Institute of Science and Technology (Japan)

University of Aveiro* (Portugal) Institute of Marine Sciences* (Spain) Ifremer* (France)

Co-funded:





What is meroplankton ?

Meroplankton is a wide variety of planktonic organisms, which spend a portion of their lives in the <u>benthic</u> region of the ocean. Meroplankton consists of **larval** stages of organisms such as sea urchins, starfish, crustaceans (crabs, lobsters, shrimps), etc.

Wide variety of shapes and life-strategies:

Main Goals of the workshop:

Advance the knowledge of larval distributions to improve model predictions of **connectivity** and **resilience** of marine communities to natural and human impacts.

1) **review state-of-the-art** instrumentation available for plankton observations in shallow and deep waters.

2) develop a strategy to **implement technological innovations for in-situ observations**:

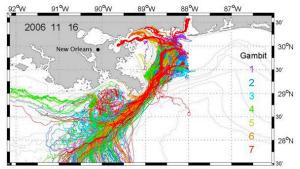
- Design a local/regional pilot study (@ NEPTUNE Observatory??)

- Standardize methodologies using current ocean observing platforms, and available time-series samples

Session themes/Working Groups:

Theme I: Knowledge advances in deep-sea larval diversity and distribution - key challenges and priorities

rspb.royalsocietypublishing.org


Larvae from deep-sea methane seeps disperse in surface waters

Shawn M. Arellano^{1,†}, Ahna L. Van Gaest¹, Shannon B. Johnson², Robert C. Vrijenhoek² and Craig M. Young¹

¹Oregon Institute of Marine Biology, University of Oregon, PO Box 5389, Charleston, OR 97420, USA
²Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA

Theme III: Data integration and oceanographic modelling

Current forecasts were used to predict the drift of small larvae of brown shrimp over a period of 60 days (the amount of time it takes for the shrimp to become adults). Some shrimp are predicted to drift at least 180 miles. The different colors show different paths the larvae might take, depending on the current. Credit: NOAA Theme II: Recent developments in plankton observation technology and approaches

IATIVE OF University of Victoria

Why do we need to quantify deep-sea larval diversity?

Bridge the knowledge gaps in the life cycle of deep-sea species:

PID

- (1) On **reproduction** (temporal scales, seasonality, fecundity/larval output)
- (2) On **larval biology and ecology** (morphology, planktotrophic x lecithotrophic, swimming capabilities, buoyancy) to make inferences about **planktonic larval duration (PLD)**

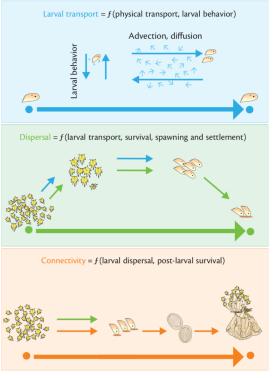
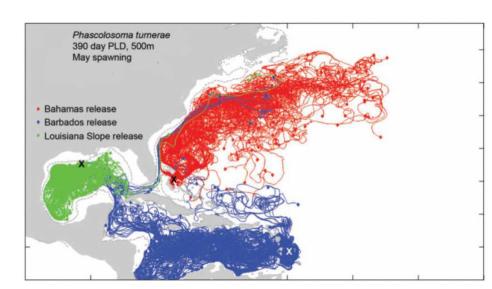
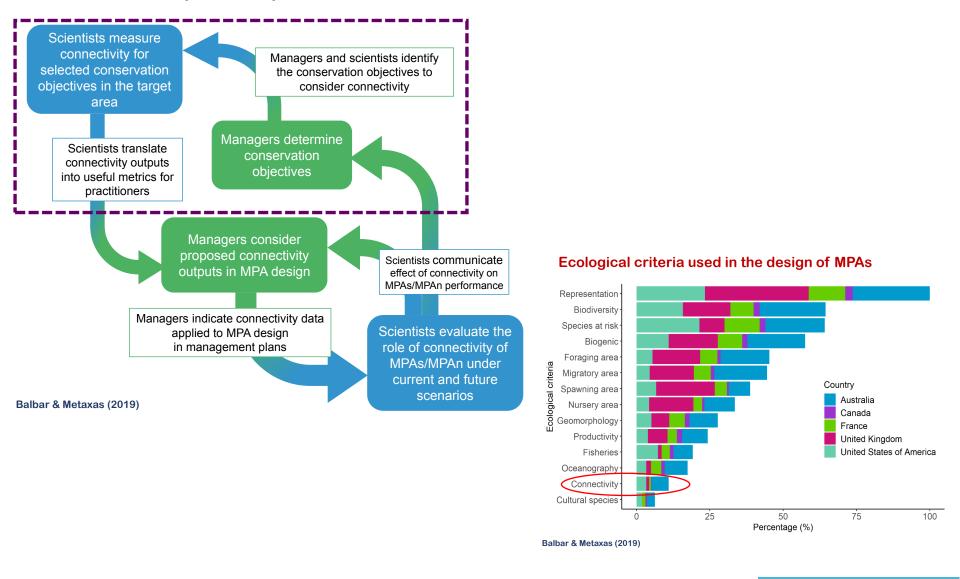
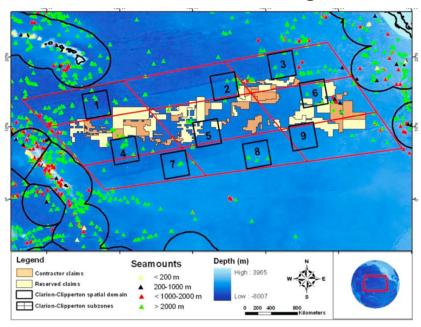



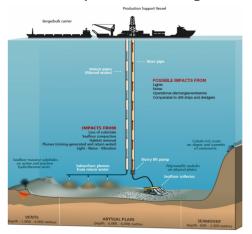
Figure 2. The concepts of larval transport, larval dispersal, and reproductive population connectivity. Colors of arrows distinguish each concept. For example, the green arrow in the connectivity box means dispersal is involved in reproductive population connectivity.

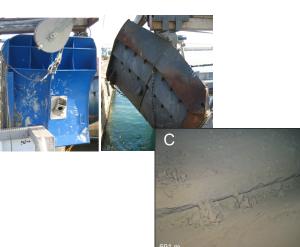


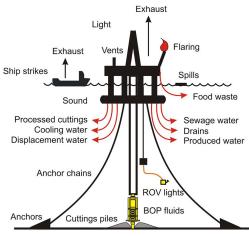
Simulated larval trajectories of deep-sea sipunculans (Young et al 2012)



CONNECTIVITY

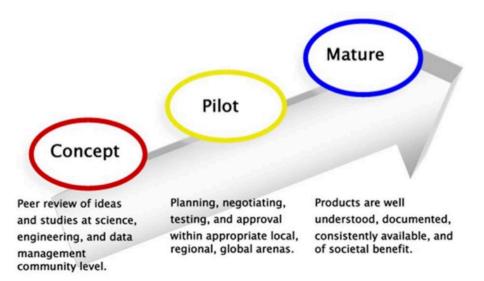

Connectivity is key!


Marine Protected Area design


Deep-sea mining

Bottom trawling

Oil exploitation



Context within the Global Ocean Observing System

Contribute to development of deep-ocean **Biodiversity and Ecosystem Essential Ocean Variables (EOVs)**

- Zooplankton biomass and diversity pilot
- Benthic invertebrate abundance and distribution concept
- Connectivity of species under consideration

Context within the Global Ocean Observing System

Maritime Zones DBCP OceanSITES SOT Argo Surface Drifters (1489) Platforms (332) ASAP Radiosondes (18) Argo (3929) VOSClim-Automated (103) ٠ ei, Deep-Argo (29) Fixed Platforms (103) GO-SHIP VOSClim-Manned (372) SOOP XBTs (56) 10 GO-SHIP (61) BGC-Argo (289) 0 Ice Buoys (22) VOS-Automated (149) GLOSS Moored Buoys (405) VOS-Manned (1227) ei Tide Gauges (252) Tsunameter (35) .

Generated by www.jcommops.org, 22/05/2017

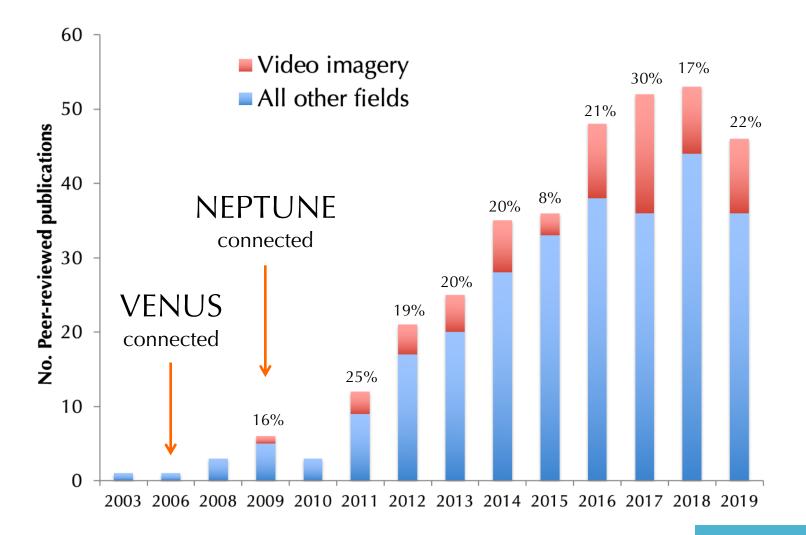
Ongoing efforts to monitor 'meroplankton' communities

International network for scientific investigation of deep-sea ecosystems Working Group 3: Population Connectivity

Anna Metaxas (Dalhousie) Eva Ramirez-Llodra (NIVA) Ana Hilário (Univ. Aveiro)

- Larval settlement experiment (multiple substrates)
 - Pop. connectivity
 - Vulnerability and recovery from disturbance

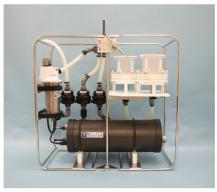
University of Victoria


of Victoria

Seafloor cabled observatories - NE Pacific and Salish Sea

Already existing - successful programs

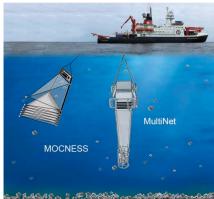
ONC Publications using video and acoustic imagery



an Initiative of 🚛

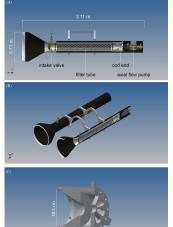
of Victoria

Existing technologies and approaches:


Large Volume Pumps

Tube traps

MOCNESS

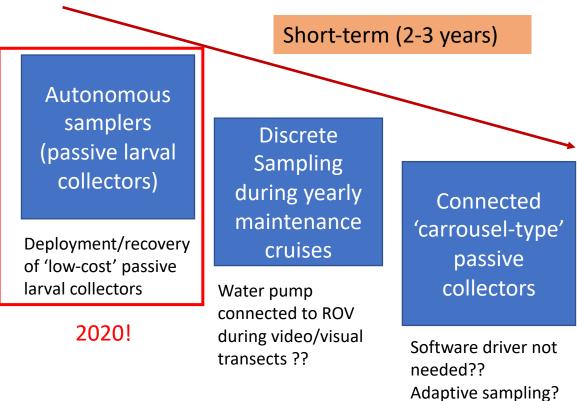


Sediment Traps

Tool	Advantages	Limitations	Has been used when
McLane	Large volumes	Requires power	Vents
pump/SALSA		One sample – temporally integrated	Abyssal plain
		Or low temporal resolution	
Sediment trap	Temporal resolution	Biased toward shelled larvae	Canyons
	Low power	Only collects larvae that are sinking	Water column
			Vents
			Seeps
			Abyssal plain
SyPRID	Super high volume	Complex platform (needs ROV/AUV)	Seeps
	High specimen quality	Temporally limited (during dive)	
	Spatially precise		
	Can estimate volume		
Tube traps	Cheap	Biased toward shelled larvae	Seeps
	Nopower	Temporally integrated (one sample)	Water column
	Easy to deploy/recover		Arctic
	Geographic spread		
	Opportunistic		
MOCNESS	High volume	Difficult to operate	Water column
	Vertical resolution	Smears horizontal resolution	Vents
			Seeps
Settlement	Cheap	Settlement/mortality obscured	Vents
panels/blocks	Nopower	Selective based on material, etc.	Seeps
	Easy to deploy/recover		Canyons
	Geographic spread		Abyssal plain
	Opportunistic		Continental slope
	Samples attached		Water column

SyPRID

Settlement blocks/panels



WORLD-LEADING DISCOVERIES AT A CRITICAL TIME

Long-term monitoring of meroplankton taking advantage of the NEPTUNE observatory installation

Path for collaboration:

Long-term (> 5 years)

Long-term monitoring requiring a large new infrastructure/instrumentation investment

- Multiple samplers at multiple locations
- New technologies
- Imaging devices

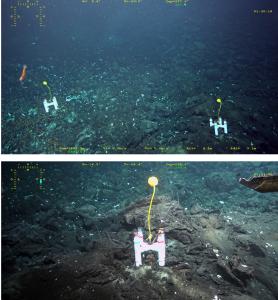
External grant proposal:

- Port connection fees
- Substantial ROV time
- Software Driver Develop., etc

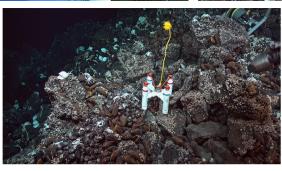
of Victoria

ONC internal proposal:

- Cost-recovery model (minimal ROV time)
- Scientific output
- ONC Staff Scientist project lead


1st ONC commitment/collaboration

Deploy low cost passive larval 'Tube traps' at NEPTUNE sites


- PVC plumbing pipes
- 2 tubes: NaCl saturated 20% DMSO
- 2 tubes: buffered 10% formalin
- Stretchable rubber cover
- Fusible magnesium link
- 2k ballast (shackles)
- Polypropylene rope

WASHINGTON - USA

University of Victoria

Conclusion remarks

With this new initiative, ONC:

- Has a great potential for harnessing an entirely new (and already actively engaged and productive) research community (aligned with ISAB directive).
- (2) Help to further increase the scientific output from our observatory network (core CFI metric).
- (3) Would be part of a worldwide effort in monitoring meroplankton (strategic partnerships).
- (4) Align with large ocean governance and stewardship programs (e.g.GOOS, DOOS, GEO-BON, etc).

